CBOW1 한국어 임베딩 - 단어 수준 임베딩 (Word2Vec, FastText) 1. Word2Vec Word2Vec은 2013년 구글 연구 팀이 발표한 기법으로 가장 널리 쓰이고 있는 단어 임베딩 모델이다. Word2Vec 기법은 두 개의 논문으로 나누어 발표됐다. Mikolov et al. (2013a)에서는 Skip-Gram과 CBOW라는 모델이 제안됐고, Mikolov et al. (2013b)은 이 두 모델을 근간으로 하되 네거티브 샘플링 등 학습 최적화 기법을 제안하였다. 1.1 모델 기본 구조 Mikolov et al. (2013a)이 제안한 CBOW와 Skip-gram 모델의 기본 구조는 다음 그림과 같다. CBOW는 주변에 있는 문맥 단어(context word)들을 가지고 타깃 단어(target word) 하나를 맞추는 과정에서 학습된다. Skip-gram 모델은 .. 딥러닝/NLP 2022. 10. 20. 이전 1 다음 반응형